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Donor levels in Si nanowires determined by hybrid-functional calculations
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The accurate determination of doping levels is critical in the optimization of devices. However, the experi-
mental identification of these levels in thin nanowires is not straightforward, while the accurate calculation of
these ionization energies is challenging. We study typical donors in (110) and (111) silicon nanowires, showing
that (i) the donor wave function is highly localized in the quantum confinement regime; (ii) there is a simple
connection between the hyperfine constant and ionization energy; (iii) the ionization energies are deeper than
those obtained within standard density-functional theory, though the difference decreases for larger wires; (iv)
the doping efficiency for diameters d>10 nm is comparable with that of bulk silicon at room temperature.
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I. INTRODUCTION

Silicon nanowires (SiNWs) are among the most important
and versatile building blocks for future molecular electronics
applications.!~* Differently from carbon nanotubes, they are
invariably semiconducting if grown under the appropriate
conditions, and only in very specific situations surface states
can arise altering their electronic structure.’~’ For these rea-
sons, SINWSs are attracting great interest as the ideal candi-
dates to fabricate nanodevices”*8 and nanosensors.’”!! Very
recently, photovoltaic devices have been fabricated from
SiNWs,!>13 where boron and phosphorus were used as p-
and n-type dopants, respectively. In these devices the quan-
tum confinement effect is negligible since the typical diam-
eters are of a few hundred nanometers. However, when re-
ducing the size of the wires quantum confinement will
modify the levels within the energy gap and common dop-
ants for bulk Si can become deep impurities for SINWs. The
accurate determination of doping levels is crucial in the op-
timization of these nanodevices. Unfortunately, the experi-
mental measurements are extremely challenging, and reliable
theoretical calculations become an essential tool to track the
dependence of the dopant states as a function of the wire
diameter.

As the size of the wires is reduced, the band gap broadens
as an effect of the quantum confinement. In such a regime
the dopant efficiency can be severely reduced. In three-
dimensional (3D) bulk Si crystal, common acceptors—such
as boron—and donors—such as phosphorus and arsenic—
are effective masslike dopants. Roughly, the effective-mass
theory (EMT) is based on a simple model of the substitu-
tional defects with minor relaxation effects that forms four
bonds with the neighbor atoms in Si crystal. For P and As,
this leads to one unpaired electron whose energy is approxi-
mately given by

m* 1
En“—RY?;, (1)

where E, is the energy of the electron relative to the
conduction-band minimum (CBM) with the main quantum

number n, m” is the effective mass of the donor electron in
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the unit of electron mass, and € is the static dielectric con-
stant of bulk Si, whereas Ry is the Rydberg constant. This is
the quantum-mechanical solution of the hydrogen atom ex-
cept for the fact that it contains bulk Si parameters, m”
~(0.3 and e=11.4. This reduces the ground-state energy
(-1 Ry=-13.605 V) of the isolated hydrogen atom by a
factor of =425 in Si, resulting in very shallow levels in the
ten meV range. This theory cannot account for fine details
such as small relaxations and charge transfer between the
substitutional atom and its host. Still, P and As donors have
about 45 and 54 meV ionization energies, respectively, very
close to what EMT predicts. From EMT one can deduce the
effective Bohr radius (ap) of the ground state

ag = (e/m")ay, (2)

where a is the Bohr radius of the isolated hydrogen atom
(about 0.577 A). This results in about 2.2 nm (thus a 4.4 nm
diameter). We note that the donor wave function can extend
to about twice of this value. Therefore, the donor electron
loosely binds to the dopant atom in bulk Si.

In a reduced dimensionality of the system, like a nano-
wire, the donor wave function is squeezed into one dimen-
sion, and this picture can change drastically. In the extreme
theoretical limit, one should solve the one-dimensional hy-
drogen atom problem, which has an infinitely deep energy
that corresponds to the infinitely localized ground state.'*
Hence, it can be predicted that in the quasi-one-dimensional
regime the energy of the EMT ground states should be
deeper than their bulk counterpart; this effect is expected to
be more and more pronounced for the smaller wires and
finally should break down at some limit diameter of the wire.
One can also realize in Eq. (1) that if the diameter of the
free-standing hydrogen-terminated SiNWs is reduced then its
€ will be reduced to some extent [the screening is not so
effective, thus E| should lie deeper than its bulk counterpart
(see Ref. 15 for a detailed discussion)]. It is difficult to esti-
mate accurately at which diameter the quantum confinement
regime for hydrogenated SiNWs begins. Ma and
co-workers'® found by scanning tunneling microscopy
(STM) that the electronic band gap of SiNWs with a diam-
eter d>7 nm agrees with that of bulk Si. On the other hand,
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the donor wave function may be squeezed already in d
~9 nm SiNWs estimated from the Bohr radius of the EMT
dopants in bulk Si with assuming that the dielectric constant
of this SINW is about the same as that of the bulk. Hence, we
can expect to enter the quantum confinement regime for d
=9 nm and the ionization energy of the EMT donors has to
be determined for thinner wires.

This issue has been recently addressed,'>!”!® parallel to
our study. Diarra and co-workers'® used an empirical tight-
binding (TB) method, where the parameters and the perturb-
ing potential of the dopants were fitted from bulk Si data.
The interaction between the carrier (electron or hole) and the
surface polarization charges induced by its own presence
were included by an effective dielectric medium model.
While this methodology may work perfectly for large
SiNWs, one should question whether accurate values can be
obtained in the quantum confinement regime, 1 nm=d
=9 nm, especially close to the lower limit, where, for in-
stance, local relaxation effects may result in structural con-
figurations that do not appear in bulk Si. On the other hand,
the smaller wires can be directly studied by ab initio stan-
dard density-functional theory (DFT) free of empirical pa-
rameters, where the structure and ground-state properties can
be determined with great accuracy. However, as is well
known, this method underestimates the band gap and one
cannot rely either on the calculated ionization energies of
dopants. This is an especially serious problem in the quan-
tum confinement regime since the fundamental gap is opened
and no simple empirical correction can be applied to the
DFT ionization energies.

These two methods predicted quite different behavior for
4 nm=d=20 nm SiNWs: while according to TB the dop-
ing efficiency starts to decrease already at d =20 nm, within
DFT calculations the ionization energies are still very shal-
low in d=3 nm SiNWs.!'3 These results are not conclusive
due to the deficiencies of both methodologies concerning this
important issue. State-of-the-art time-dependent DFT (TD-
DFT) or many-body perturbation theory, like GW,' would
be the best suited choice to study the dopant states in SINWs,
but they are computationally prohibitive even for very small
defective wires, e.g., d=~1.0 nm. Recently,”® we demon-
strated that by using a well-chosen ab initio hybrid func-
tional within DFT (i) we were able to calculate relatively
large SiNWs directly and (ii) the calculated electronic band
gaps of the SiNWs with different sizes were in excellent
agreement with the experimental results,'® as well as with
GW calculations.?! The aim of this paper is applying this
methodology to the study of EMT donors in hydrogenated
SiNWs.

In this work (i) we show that in accordance with one-
dimensional hydrogen theory, the donor dopants show typi-
cal EMT states even at d= 1.5 nm, and their wave function
are highly localized in the quantum confinement regime; the
EMT state breaks down only at about d=~1.0 nm; (ii) we
provide the hyperfine constant of phosphorus to identify it in
SiNWs and we establish the connection between its hyper-
fine constant and ionization energy; (iii) we show that the
ionization energy of dopants are deeper than the values ob-
tained within standard DFT, though the difference decreases
for larger wires; (iv) we predict that the doping efficiency for
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d=10 nm is comparable with that of bulk Si. Although it
has been shown that P dopants segregate to the surface, es-
pecially in the presence of dangling-bond defects,”>?? in our
study we consider substitution in the innermost part of the
wire. The reason is that we want to focus on the effect of
quantum confinement. As we show below, even if the doping
into the core is achieved, the donor level is still too deep to
act as an efficient dopant.

II. METHODOLOGY

We have performed two sets of DFT calculations. At first
we have relaxed the atomic positions until all the forces were
lower than 0.02 eV/A with the SIESTA code,?* using the gen-
eralized gradient approximation (GGA) in the Perdew-
Burke-Ernzerhof (PBE) parametrization functional® for the
exchange-correlation energy. We have used a 30 A vacuum
between the wires in the nonperiodic directions and
Monkhorst-Pack K-point sampling?® along the wire axis in
order to converge the charge density, using an optimized
double-{ polarized basis set and Troullier-Martins
pseudopotentials.”’” The second set of calculations was car-
ried out with a one-parameter hybrid functional within DFT
(Ref. 28) using the optimized GGA geometries. We used the
CRYSTAL2003 code,”’ using norm-conserving effective core
potentials with an optimized 21G* valence basis.*® Besides
the PBE functional, 12% Hartree-Fock exchange is mixed
into the Hamiltonian. It has been shown that this is the best
choice for Si-based materials,>' where not only the band gap
of bulk Si is reproduced, but also the defect states are ob-
tained with good accuracy.?' In CRYSTAL2003 calculations, we
used a 6-21G" all-electron basis for the P atom in order to
calculate its hyperfine constants in SINWs. Extending the use
of this hybrid-functional Hamiltonian (HFH) to nanostruc-
tures could be questioned. However, our HFH has recently
proven to perform remarkably well in the calculation of the
band gap of hydrogenated SiNWs,?® obtaining good agree-
ment with GW calculations?' and experimental results.'® We
also note that a similar HFH was used to successfully study
carbon nanotubes3? and graphene nanoribbons.??

We focus on (111) and (110) SiNWs, the wires that are
most easily grown and thus are most important for applica-
tions. The effective diameters d of these wires were
~1.0, =1.5, and =2.0 nm. The definition of the diam-
eter of the nanowires is somewhat ambiguous. We defined it
as the diameter of the largest circle which can be drawn into
the wire excluding the hydrogen atoms,** using cylindrical
shaped SiNWs as indicated by STM measurements.'® We
emphasize that we dealt with defective nanowires and that
we intended to study isolated dopants. The primitive cell of
the wires is clearly too small and adding an impurity there
would represent an unrealistic doping concentration. There-
fore, we used a supercell geometry along the periodic dimen-
sion, while allowing the proper vacuum buffer along the
transverse dimensions. For small wires the donor wave func-
tion is squeezed and its effective Bohr radius is reduced a lot
compared to its bulk counterpart, as was discussed above.
We used /=2 nm for all SiNWs in our study, where [ is the
supercell lattice constant. This supercell size proved to be
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(a) <110> wire (b)

d~1.0nm

<111> wire
d~1.0nm

(C) <110> wire (d)

d~1.5nm d~1.5nm

FIG. 1. (Color online) Cross-section view of the donor wave
functions in the nanowires studied in the case of P doping [panels
(a) to (d)]. For the thinnest (111) SINW we also plot a side view
[panel (e)] of the nanowire, showing that the chosen computational
supercell (here shown in its full length) is large enough to reason-
ably describe the decay of the P wave function. We plot isosurfaces
of the modulus of the wave functions at the I" point, whereas the
dark and light colors correspond to the different phases.

sufficient to allow a proper decay of the impurity wave func-
tion [see Fig. 1(e)]. Our largest wire ((111), d=2.0 nm, [
~2.9 nm) contains 636 atoms, which is close to our com-
putational capacity limit for the HFH CRYSTAL2003 code, and
we could not consider directly larger wires. We will show
later, however, that we can still estimate the ionization ener-
gies of donors in the larger diameter range.

III. RESULTS

A. Ionization energies

We considered P substitutional in the innermost part of
the wires in order to calculate their shallowest ionization
energies. As we mentioned earlier, surface impurities are ex-
pected to provide deeper states for reasons that are beyond
quantum confinement. We found that the relaxation of the
neighbor atoms next to P is small.

The calculated donor wave function in different wires is
shown in Fig. 1 and allows us to conclude several things: (i)
the donor wave function is indeed strongly localized com-
pared to their bulk counterpart; (ii) our supercell is accept-
ably long even for d=2.0 nm to describe the isolated P do-
nors in our SINWs. Supercells made of a smaller number of
primitive cells would result in an artificial overlap between
the donor wave functions that cannot correctly describe the
isolated donors; (iii) the donor states in the ultrasmall wires
(d=1.0 nm) are qualitatively different from the larger
wires: the donor wave function is well localized within d
=1.5 nm wires, while it significantly interacts with the sur-
face in d=1.0 nm wires: the donor states cannot be de-
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scribed as quasi-one-dimensional confined EMT states any-
more because the surface strongly and directly influence
them. On the other hand, it is apparent from Fig. 1 that P
donors still exhibit EMT-like donor states in d=1.5 nm
wires. The large reduction in the Bohr radius of the donor
wave function is caused in part by the reduced screening and
in part by the two-dimensional quantum confinement effect.
Thus, we estimate that the simple quasi-one-dimensional
EMT state breaks down at about d=1.0 nm. This means
that calculations on shallow dopants carried out in d
=~ 1.0 nm wires do not provide relevant information that can
be extrapolated to larger wires. Also, even in the relatively
small wires /=2.0 nm supercells should be used to explore
the physics of isolated dopants. This is more critical for
larger wires because, according to the low-dimensional EMT,
the wider the wire the more delocalized donor wave func-
tions are expected to appear. This makes the simulation by
ab initio methods very challenging since wider wires contain
a larger number of atoms in the primitive cell and the corre-
sponding supercell should be larger (made of a larger number
of primitive cells) than for smaller wires. We expect that
about /=40 A supercell should be used for convergent re-
sults for d=2.5 nm, amounting to about 1200 atoms. At
present, this system is computationally prohibitive for our
HFH method. Still, we believe that we could capture the
physics of EMT states in d=1.5-2.0 nm wires that are rel-
evant even for larger wires.

We calculated the ionization energies (E;) of the P donor.
As expected, the DFT-PBE values show too shallow levels
because of the self-interaction error. Nevertheless, there is a
clear trend indicating that this error shrinks for larger wires.
This is not unexpected since standard DFT values for very
delocalized states (similar to “metallic” states) works well.
However, the error for thin nanowires is not negligible. Due
to computational limitations, as discussed above, we cannot
calculate larger wires beyond standard DFT. However, we
know that if the radius of the wire (R) goes to infinity, then
the ionization energy of the P donor will reach EY
=0.045 eV; its dielectric constant will be equal to 11.4,
while its effective mass will be about 0.3. We used the func-
tion of Ef) +(a/R)? to obtain the ionization energies in the
larger wires in the spirit of the TB model developed by Di-
arra and co-workers'> (E; is given in eV, while R and a in
nm). This fit function describes both the quantum confine-
ment effect on the donor wave function (reduced Bohr radius
of the donor wave function) and the reduced screening.'
These two effects are dependent on each other and naturally
occur in our self-consistent solution. We fit the a;b param-
eters to the ionization energies of the EMT states (d
=1.5-2.0 nm) in Table I, obtaining 0.35;1.49 and 0.43;1.56
for (011) and (111) wires, respectively. The estimated ion-
ization energies are plotted in Fig. 2.

The decay of the function is very similar to that of the TB
results of Ref. 15, but the starting point from the HFH
method is much shallower in energy. TB calculations predict
ionization energies deeper than 0.7 eV for the P donor in d
=2.0 nm wires, whereas the HFH values are about 0.3-0.25
eV, depending on the type of wire. Therefore, in small wires
TB overestimates the ionization energies, while DFT-PBE
underestimates them. This has a serious consequence on the
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TABLE 1. The calculated ionization energies obtained by DFT-
PBE and HFH calculation for the given wires in the first column.
All values are given in eV with respect to the calculated CBM. In
the last column we report the Fermi-contact hyperfine constants
AE;PC) in MHz of the *'P donor in SINWs given in the first column.
As a reference, we give the Fermi-contact term of the 31p donor in
bulk Si: 117.5 MHz taken from Ref. 35.

d PBE HFH AR
(011) 1.0 0.66 0.93 611.2
1.5 0.20 0.36 1119.7
2.0 0.13 0.25 744.6
(111) 1.0 0.31 0.64 1465.2
1.5 0.23 0.46 1208.4
2.0 0.19 031 794.4

extrapolation of the ionization energies of large wires: while
TB predicts a decrease in the doping efficiency already for
d=20 nm, within standard DFT this happens only for wires
as thin as d=3 nm. On the other hand, as shown in Fig. 2,
within our HFH scheme it is around d=10 nm that the ion-
ization energy difference obtained in the wire and in the bulk
becomes small (=20 meV) so that the activation of donors
is a feasible process at room temperature. According to our
calculations the difference vanishes (=1 meV) for d
=71 nm. This can be explained by the nature of the dielec-
tric screening which decays very slowly as a function of the
diameter of the wire. These results qualitatively agree with
recent measurements on heavily P-doped SiNWs (Ref. 36)
that reported a change in the conductivity already for d
~70 nm.

B. Hyperfine constant

In silicon quantum dots the isotropic hyperfine constant of
P donors could be measured by electron paramagnetic

0.45 — <110> Si-NWs
< I — <I11>Si-NWs |
o

FIG. 2. (Color online) The estimated donor ionization energies
for phosphorus dopant in the core of hydrogenated SiNWs as the
function of their diameter. The vertical line shows the limit of bulk
Si. The calculated data corresponding to =1.5 and =2.0 nm
SiNWs are shown by diamonds and triangles. The curves are ob-
tained on the basis of a fit that follows the model developed by
Diarra et al. (Ref. 15) (see text). Notice that the calculated ioniza-
tion energies of the =1.0 SINWs have not been used as inputs for
the fit (and thus are not displayed) for the reasons explained in the
text.
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resonance.’’ It is useful to calculate the hyperfine constants
of the *'P isotope in SiNWs because one can establish a
correspondence between the donor wave function and the
hyperfine constants as explained below. The hyperfine con-
stants can be calculated as

1 8 3xx: O
N l l
4 =0s dSrnS(r)yN%h{( 3 5(r)> +(?L‘731)]

3)

where ny(r) is the spin density of the spin state S, yy is the
nuclear Bohr magneton of nucleus N, and v, is the electron
Bohr magneton. The Fermi-contact term, AF@:ELA,({V)/Z%, is
proportional to the spin density localized at the place of the
nucleus which is dominant compared to the dipole-dipole
term, (A33—EiA§lN )/3)/2. The ratio of the Fermi-contact and
dipole-dipole terms characterizes the shape of the spin den-
sity. The contribution of s-like wave functions to the charge
density has a large effect on the Fermi-contact term, but a
negligible effect on the dipole-dipole term (since the s-like
wave function has a maximum at the positions of the nuclei
and it is an even function), while the contribution of p-like
wave functions to the charge density has a negligible effect
on the Fermi-contact term, but a large effect on the dipole-
dipole term (since the p-like wave function has a node at the
place of nuclei and it is an odd function).

The P donor has a 1s ground state possessing A; symme-
try in bulk Si, which implies that only the Fermi-contact term
occurs for 31P, as indeed measured.’® Unless the EMT state
does not break down, the EMT donor state in SINWs shows
similar features like in bulk Si so the hyperfine field will be
dominated by the Fermi-contact term. The Fermi-contact
term is proportional to |¢f (0)|?, where (ﬁf (r) is the s-like
wave function of a P atom. Finally, the more localized EMT
donor implies a larger Fermi-contact term and it can be used
as an indirect measure of the effect of quantum
confinement. 338

We have calculated the hyperfine constants of P impurities
in the SiNWs considered. The results are summarized in
Table I. One can see that the Fermi-contact term in all cases
shows much larger values than in bulk Si. Besides that, the
values decrease with the increasing size of the SiNWs, ex-
cept (011) wires. However, we already showed above that
the EMT state breaks down in the d=1.0 nm wire, espe-
cially in the small (011) wire, and the wave function shows
different character compared to others. This also reflects in
its hyperfine constants. The dipole-dipole term of that donor
is 17.4 MHz that implies a sizeable dangling-bond-like hy-
bridization with the neighbor atoms. For the (111) wire with
d=1.0 nm this value is much smaller, though measurable,
4.07 MHz. In the (011) wire we observed that the donor
wave function is very squeezed in the nonperiodic directions,
forcing the wave function to spread along the periodic direc-
tion of the wire. This delocalization is completely different
from the usual EMT donor states in larger wires, showing the
spherical shape of the donor wave function.

For the d=1.5 nm wires, the envelope function of the
donor ground state can be described as ‘P(r)z\/Ta% exp(
—rlag), provided that the P atom resides in the inner part of
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(a) <110> wire (b) <111> wire
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X (A)° 0

FIG. 3. (Color online) The calculated total potential surface averaged in the periodic axis for the different wires [panels (a) to (f)]. This
shows the two-dimensional confinement potential for the quasi-free donor electron. In panels (g) and (h) the average potential surface of
panels (e) and (f) has been smoothed in order to hide the details coming from the atomistic details.

the wire. Considering this EMT donor state one can establish ~744/117. Indeed, large supercells are needed even for d
that the donor wave function is expected to be about 10X ~2.5 nm wires to describe the isolated EMT donors.
more localized in d=1.5 nm wires than in bulk Si. This is The hyperfine constants can be used as an indirect probe

consistent with the drawn wave function shown in Fig. 1. In into whether the P donor indeed substitutes a core Si atom or
d=2.0 nm wires this number reduces already to about 6 is placed at the surface. The closer the P donor to the surface
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the more the wave function deviates from the spherical
shape. This means that the dipole-dipole hyperfine interac-
tion will appear for those P donors which are close to the
surface.

By assuming that the effective mass does not change sig-
nificantly in the wires compared to its bulk value, one can
find the following connection between the Fermi-contact hy-
perfine constant of the P donor and its ionization energy:

ARR) ~ [EAR)PER), (4)

where E,(R) is the ionization energy of the P donors in the
wire with the radius of R. Using this formula we predict that
the dielectric constants in the ultrathin wires decrease to
about one third of the dielectric constant of bulk Si. A similar
feature is expected in silicon nanocrystals.?® Although cap-
turing the right trend of the dielectric constant, this model
might be oversimplified since we do not take into account
the space dependence of the dielectric constant. First-
principles calculations of the static dielectric properties of
nanowires*’ provide higher average values for €, where they
calculated the space-dependent dielectric constant.

IV. DISCUSSION

We have discussed the results for the shallowest donor in
silicon confined into the wire. Naively, we expect that the
deeper donor levels than that of the P donor in bulk Si will
result in also deeper donor levels in the wires. However,
Durgun and co-workers'” showed shallower levels for ar-
senic than for phosphorus in thin SiNWs. We note that the
calculation were made in a very small supercell that may not
be realistic. Nevertheless, local relaxation effects may
change the order of levels of different dopants in the quan-
tum confinement regime. Therefore, we also investigated ar-
senic in (110) and (111) SiINWs of 1.0 and 1.5 nm diameter.
For these dopants, as our purpose was simply outlining a
trend, we restricted ourselves to DFT-PBE calculations. We
found that As basically behaves like P, although it has some-
what deeper ionization energies (by about 0.03 eV) than the
P donor in wires of the same diameter. Arsenic is not an ideal
dopant for biological applications; therefore, we also studied
the doping efficiency of sulfur. Sulfur is a double donor in
bulk Si; its first ionization energy is about 0.3 eV. This state
can be described by the same effective-mass theory like for
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column V dopants, but the electron-electron interaction on
the 1s ground state will lower its ionization energy. We
found that this characteristic behavior persists also in
SiNWs. We have found that the EMT state breaks down in
d=1.0 nm wires while it works for d=1.5 nm wires; there-
fore, we conclude that the EMT theory squeezed into quasi-
one-dimension can be generalized for every EMT dopant (in-
cluding the acceptors) in SiNWs. In Fig. 3 we plot the
calculated total potential that the quasi-free donor electron
feel in the wires.

In order to have a qualitative picture we averaged the
potential along the periodic axis. The resulted potential sur-
face shows clearly the quantum confinement of the electron
in two dimensions. Apart from the atomistic details, the po-
tential surface shows almost the same depth for all the wires
independently on its orientation and size, while naturally the
width of the potential well increases with the increasing di-
ameter of the wires. Actually, the potential surface shows a
paraboloidlike shape, but it is difficult to achieve even a
semiqualitative analysis. Nevertheless, simple quantum-
mechanical calculation arguments are consistent with the re-
sults of the self-consistent calculations: the ionization ener-
gies decrease with increasing size of the wires.

V. SUMMARY

In summary, we studied the EMT donors in silicon nano-
wires. We found that generally the EMT levels will be much
deeper in ultrathin silicon nanowires than in bulk silicon, but
we predict that the doping efficiency will be almost perfect
for wires that have larger diameter than 10 nm. In addition,
we provide hyperfine constants for the shallowest donor,
phosphorus, in thin nanowires and we show that there is a
simple connection with the ionization energies. We suggest
that measurements of the hyperfine constants can be used as
a probe for the detection of the location of the impurities in
the wires.
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